- vollständiges Funktionensystem
- полная система функций
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
Kugelflächenfunktion — Veranschaulichung einiger Kugelflächenfunktionen (um die z Achse rotierend). Dargestellt ist Yl,m, wobei l der Zeile und m der Spalte entspricht. Zeilen und Spalten werden jeweils bei null beginnend durchnummeriert. Die Kugelflächenfunktionen… … Deutsch Wikipedia
Kugelflächenfunktionen — Veranschaulichung einiger Kugelflächenfunktionen (um die z Achse rotierend). Dargestellt ist Yl,m, wobei l der Zeile und m der Spalte entspricht. Zeilen und Spalten werden jeweils bei null beginnend durchnummeriert. Die Kugelflächenfunktionen… … Deutsch Wikipedia
Kugelfunktionen — Veranschaulichung einiger Kugelflächenfunktionen (um die z Achse rotierend). Dargestellt ist Yl,m, wobei l der Zeile und m der Spalte entspricht. Zeilen und Spalten werden jeweils bei null beginnend durchnummeriert. Die Kugelflächenfunktionen… … Deutsch Wikipedia
Sphärisch Harmonische — Veranschaulichung einiger Kugelflächenfunktionen (um die z Achse rotierend). Dargestellt ist Yl,m, wobei l der Zeile und m der Spalte entspricht. Zeilen und Spalten werden jeweils bei null beginnend durchnummeriert. Die Kugelflächenfunktionen… … Deutsch Wikipedia
Legendre-Polynom — Die Legendre Polynome (nach Adrien Marie Legendre), auch zonale Kugelfunktionen genannt, sind spezielle Polynome, die auf dem Intervall [ 1,1] ein orthogonales Funktionensystem bilden. Sie sind die partikulären Lösungen der legendreschen… … Deutsch Wikipedia
Legendre-Polynome — Die Legendre Polynome, auch zonale Kugelfunktionen genannt, sind die partikulären Lösungen der legendreschen Differentialgleichung. Sie sind spezielle reelle oder komplexe Polynome, die ein orthogonales Funktionensystem bilden. Benannt sind sie… … Deutsch Wikipedia
Legendrepolynom — Die Legendre Polynome, auch zonale Kugelfunktionen genannt, sind die partikulären Lösungen der legendreschen Differentialgleichung. Sie sind spezielle reelle oder komplexe Polynome, die ein orthogonales Funktionensystem bilden. Benannt sind sie… … Deutsch Wikipedia
Legendresche Differentialgleichung — Die Legendre Polynome, auch zonale Kugelfunktionen genannt, sind die partikulären Lösungen der legendreschen Differentialgleichung. Sie sind spezielle reelle oder komplexe Polynome, die ein orthogonales Funktionensystem bilden. Benannt sind sie… … Deutsch Wikipedia
Legendresches Polynom — Die Legendre Polynome, auch zonale Kugelfunktionen genannt, sind die partikulären Lösungen der legendreschen Differentialgleichung. Sie sind spezielle reelle oder komplexe Polynome, die ein orthogonales Funktionensystem bilden. Benannt sind sie… … Deutsch Wikipedia
DTFT — Dieser Artikel gibt eine Übersicht über die üblichen Varianten der Fourier Transformation. Häufig wird die kontinuierliche Fourier Transformation kurz als Fourier Transformation bezeichnet; für anschauliche Beispiele siehe Artikel Fourier Analyse … Deutsch Wikipedia
Fourier-Koeffizient — Dieser Artikel gibt eine Übersicht über die üblichen Varianten der Fourier Transformation. Häufig wird die kontinuierliche Fourier Transformation kurz als Fourier Transformation bezeichnet; für anschauliche Beispiele siehe Artikel Fourier Analyse … Deutsch Wikipedia